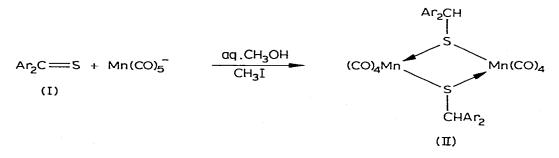
Journal of Organometallic Chemistry, 122 (1976) C31–C32 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

REACTION OF DIPHENYLCYCLOPROPENETHIONE WITH Mn(CO), ": RING CLEAVAGE, ALKYLATION, AND REDUCTION

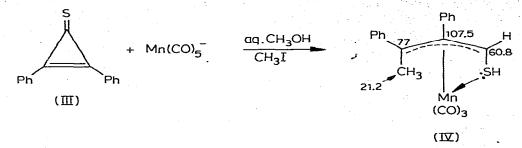

HOWARD ALPER* and HANG-NAM PAIK

Department of Chemistry, University of Ottawa, Ontario K1N 6N5 (Canada) (Received October 4th, 1976)

Summary

Alkylation, reduction, and ring opening of diphenylcyclopropenethione to a π -allyl complex occurs on treatment with Mn(CO)₅⁻ and methyl iodide in aqueous methanol.

Thiobenzophenones (I) react with manganese pentacarbonyl anion and methyl iodide in aqueous methanol to give dimanganese octacarbonyl complexes (II) [1]. This reaction is believed to proceed via charge-transfer and radical intermediates


[2]. This communication describes the novel reaction of diphenylcyclopropenethione(III) with the metal carbonyl anion. It was of considerable interest to learn the effect of an α,β -double bond, and of ring strain^{*}, on the reaction course.

Treatment of III with $Mn(CO)_5^-$ (generated from $Mn_2(CO)_{10}$ and NaOH) [4] for four hours at room temperature, followed by addition of an equimolar amount of methyl iodide gave the yellow, crystalline, air-stable π -allyl complex, IV, m.p. 179–180°C^{**}. The ¹H NMR spectrum (CDCl₃, TMS as internal standard) exhibited a singlet at δ 2.23 ppm (3H, CH₃), doublets at δ 1.73 ppm

C31

^{*}See ref. 3 for examples of metal carbonyl induced cleavage reactions of the strained azirine heterocycles. **Satisfactory elemental analysis (C, H, S, Mn) and osmometric molecular weight were obtained for IV.

(1H, SH, J = 2 Hz) and δ 5.13 ppm (1H, CH), and a multiplet at δ 7.13–7.48 ppm (10H, Ph). The ¹³C NMR chemical shifts (CDCl₃) for the methyl and π -allyl carbons of IV are noted with the structure (in addition, eight aromatic carbon resonances were observed at δ 124.8, 127.5, 128.0, 128.2, 128.6, 129.8, 136.8,

and 139.6 ppm. The chemical shifts for the methyl carbon, and for the π -allyl carbons bearing a phenyl group, are in good agreement with literature data for other π -allyl complexes [5, 6]. Terminal metal carbonyl stretching bands were observed in the infrared at 2005ms, 1931s, and 1907s cm⁻¹. Absorption bands at similar positions have been reported for other Mn(CO)₃ complexes [7, 8]. The mass spectrum of IV displayed a molecular ion peak at m/e 378, followed by successive loss of three carbonyl groups.

Complex IV is the first example, to our knowledge, of a sulfur-donor ligand π -allyl manganese complex. Furthermore, an unusual hydrogenation of the thione group occurs in the conversion of III to IV. In addition, alkylation takes place at a phenyl substituted carbon, rather than at the carbon or sulfur atom of the thiocarbonyl group [9]. In contrast, for thiobenzophenones, hydrogen abstraction from solvent to give II from I is a much more facile process than alkylation.

The mechanism of this interesting ring-cleavage reaction, and a determination of the reaction sequence (i.e. ring opening, alkylation, reduction), is currently being investigated.

Acknowledgments

We are grateful to Imperial Oil Limited, and to the National Research Council of Canada, for support of this research.

References

- 1 H. Alper and H.N. Paik, J. Organometal. Chem., in press.
- 2 A. Ohno, K. Nakamura, M. Uohama, S. Oka, T. Yamabe and S. Nagata, Bull. Chem. Soc. Japan, 48 (1975) 3718.
- 3 H. Alper and J.E. Prickett, J. Chem. Soc., Chem. Commun., (1976) 483; H. Alper and S. Wollowitz, J. Amer. Chem. Soc., 97 (1975) 3541.
- 4 R.B. King, Organometal. Syn., 1 (1965) 147.
- 5 L.A. Churiyaeva, M.I. Lobach, G.P. Kondratenkov and V.A. Kormer, J. Organometal. Chem., 39 (1972) C23.
- 6 A.N. Nesmeyanov, L.A. Fedorov, N.P. Avakyan, P.V. Petrovskii, E.I. Fedin, E.V. Arshavskaya and LI. Kritskaya, J. Organometal. Chem., 101 (1975) 121.
- 7 A.G. Osborne and M.H.B. Stiddard, J. Chem. Soc., (1962) 4715.
- 8 J.G. Dunn and D.A. Edwards, J. Organometal. Chem., 61 (1973) 323.
- 9 D. Paquer, Bull. Soc. Chim. France, (1975) 1439, and ref. cited therein.